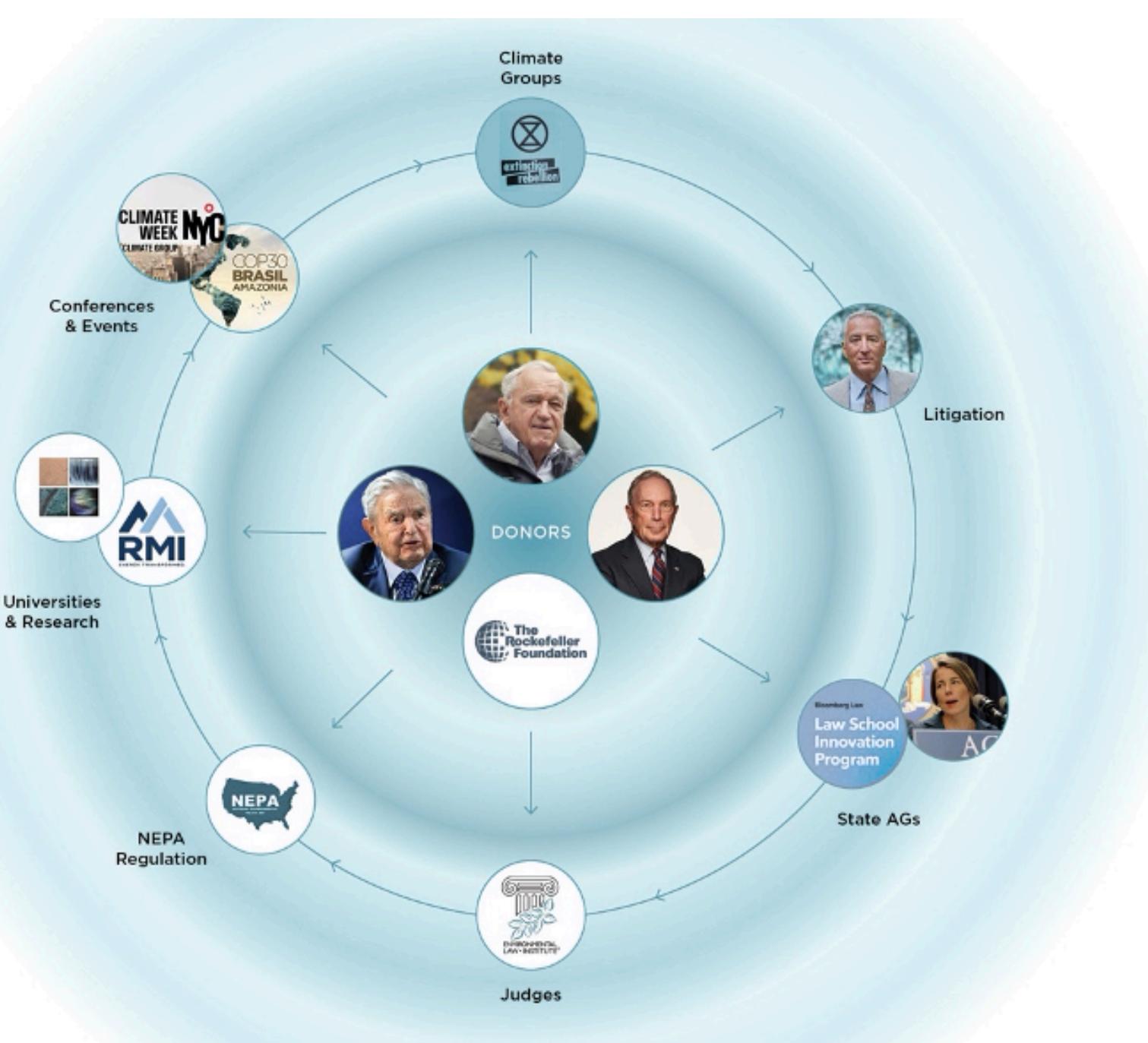


POWER THE FUTURE


THE ART OF THE DELAY

**HOW ENVIRONMENTAL ACTIVISM
RAISES PRICES ON EVERYDAY GOODS**

DECEMBER 2025

THE DELAY ECOSYSTEM

Over the past decade, environmental advocacy has evolved into a sophisticated, well-funded ecosystem that influences infrastructure outcomes at nearly every stage of the development process. Rather than opposing projects solely through public protest, modern climate activism increasingly operates through institutional mechanisms, litigation, regulatory pressure, academic research, elections, and permitting processes, that shape how, when, and whether projects are allowed to move forward.

Major donors and philanthropic foundations often sit at the center of this ecosystem, providing financial support that flows outward to a network of aligned organizations and activities. These efforts are not limited to a single tactic or venue; instead, they reinforce one another across multiple institutions that collectively govern infrastructure development.

Specifically, funding supports:

- Litigation that challenges permits after they are issued, frequently forcing agencies back into multi-year supplemental reviews or reopening settled questions.
- Regulatory pressure, particularly through expansive interpretations of environmental review statutes, which raise the procedural bar

for approvals and increase the risk of legal vulnerability.

- State attorneys general actions that introduce additional layers of legal uncertainty, even for projects that have cleared federal review.
- Academic and research institutions that develop studies, frameworks, and policy guidance that agencies are encouraged, or pressured, to adopt as new baselines.
- Judicial education and engagement programs that shape how environmental claims are framed and evaluated within the legal system.
- Conferences and global climate events that coordinate messaging, strategy, and narratives across judges, advocacy groups, regulators, and policymakers.

Recent reporting has highlighted how some of these mechanisms operate in practice. For example, investigative coverage has shown that judges have participated in environmental law trainings and seminars underwritten or organized by advocacy-aligned nonprofits, raising questions about how legal frameworks and priorities are presented in ostensibly educational settings.

Other reporting has documented how philanthropic entities, including those associated with Michael Bloomberg, have funded staff positions embedded within state attorneys general offices to support climate-related litigation and enforcement initiatives.

Individually, these activities are often described as education, research, or capacity-building. **Collectively, they function as a feedback loop: advocacy-driven research informs regulatory expectations; regulatory standards create new litigation opportunities; litigation produces delays; delays increase costs and risk; and higher risk discourages investment or raises prices for finished goods.**

Importantly, this ecosystem does not need to stop every project outright to have an effect. By increasing the time, uncertainty, and procedural burden associated with permitting and construction, it can materially slow infrastructure development across energy, transportation,

housing, and manufacturing. Those delays, in turn, translate into higher financing costs, constrained supply, and ultimately higher prices borne by consumers.

“Delay is not a side effect of this ecosystem. It is often the intended outcome.”

FROM DELAY TO HIGHER PRICES

Why Delays Raise Prices Even If You Never Hear About the Project

When infrastructure projects are delayed, whether energy pipelines, power transmission, ports, rail expansions, factories, or housing, the costs do not disappear. They are absorbed into the economy in predictable ways:

- 1. Higher financing costs.** Projects under legal or regulatory uncertainty carry capital for longer periods, increasing interest and financing expenses.
- 2. Higher construction costs.** Delays expose projects to inflation in labor and materials, often forcing redesigns or supplemental reviews.
- 3. Reduced supply.** When projects are slowed or canceled, the supply of energy, housing, and transportation capacity tightens.
- 4. Higher input costs across the economy.** Energy, transportation, and logistics are embedded in nearly every consumer good. When those inputs become more expensive, prices rise broadly.

Importantly, consumers do not need to live near a delayed pipeline or power line to feel the effects. In national markets, localized supply constraints raise prices everywhere.

Even under cautious assumptions, the impact is real. **Energy, transportation, and commercial space account for roughly 25% of the cost of many consumer goods.**

Over the past several years, those input costs have risen materially. **If only a portion of delay driven costs, and just 10–15% of those increases are attributable to delay-driven supply constraints, the result is about 0.75% to 2% higher retail prices across everyday goods**

That may sound modest, until it is applied across the entire economy.

ECONOMIC IMPACT ON CHRISTMAS MORNING

What Delay Looks Like at the Checkout Counter

Abstract discussions of permitting, litigation, and regulatory delay can feel distant from everyday life. But the costs created by these delays do not remain confined to court filings or agency dockets. They are absorbed into the economy and show up quietly in the price of ordinary consumer goods, particularly during the holiday season.

Modern toys and consumer products rely on energy-intensive manufacturing, global shipping networks, domestic transportation, warehousing, and retail space. Each of these inputs is sensitive to the availability and cost of infrastructure. When projects that would expand energy supply, improve ports, add rail capacity, or modernize logistics facilities are delayed, the result is higher embedded costs throughout the supply chain.

“Consumers don’t pay for lawsuits directly, but they pay for the supply constraints those lawsuits create.”

To illustrate how these system-wide effects translate into consumer prices, the examples below use two conservative scenarios using a conservative estimate of embedded energy and logistics cost and a realistic estimate

Both scenarios assume that only a portion of infrastructure-related cost pressures are attributable to delay-driven supply constraints.

LEGO Sets

A typical LEGO set sold in the United States reflects costs from electricity and fuel used in manufacturing, plastic resin production, ocean shipping and port handling, domestic rail and trucking, and warehousing and retail space.

- **Low-range impact (0.75%):** A \$100 LEGO set carries roughly \$0.75 in added cost.
- **Moderate-range impact (1.5-2.0%):** The same set carries roughly \$1.50 to \$2.00 in added cost.

Consumer Electronics

Consumer electronics are particularly sensitive to infrastructure constraints due to energy-intensive semiconductor fabrication, international shipping, climate-controlled warehousing, and high transportation requirements.

- **Low-range impact (0.75%):** A \$300 device carries roughly \$2.25 in added cost.
- **Moderate-range impact (1.5-2.0%):** The same device carries approximately \$4.50 to \$6.00 in added cost.

Barbie Dolls & Similar Fashion Toys

A Barbie doll or similar fashion toy reflects costs from plastic resins and chemical inputs, packaging materials, electricity used in molding and assembly, and global logistics.

- **Low-range impact (0.75%):** A \$30 doll carries roughly \$0.20 to \$0.30 in added cost.
- **Moderate-range impact (1.5-2.0%):** The added cost rises to approximately \$0.45 to \$0.60 per unit.

While the per-item increase is small, these products are sold in massive volumes, meaning even modest increases have meaningful aggregate effects.

Remote-Controlled Cars and Toy Drones

Remote-controlled vehicles and toy drones combine electronics, batteries, motors, plastics, and international shipping, making them especially exposed to energy and transportation constraints.

- **Low-range impact (0.75%):** A \$120 toy carries roughly \$1.00 to \$1.50 in added cost.
- **Moderate-range impact (1.5-2.0%):** The added cost increases to approximately \$2.50 to \$3.00 per unit.

WHAT THIS MEANS FOR FAMILIES

Individually, these increases may appear modest. But they do not occur in isolation. They apply across toys, electronics, clothing, appliances, food, and household goods and across millions of purchases every year.

Under the low-range scenario, the cumulative effect can amount to several hundred dollars per household annually in higher prices. **Under the moderate-range scenario, the total impact can approach or exceed \$1,000 per household per year, without any visible line item explaining why.**

There is no surcharge labeled “permitting delay” or “litigation cost.” Instead, these costs are quietly embedded throughout the economy, the result of a system in which infrastructure is slower, riskier, and more expensive to build.

By the time families are shopping for Christmas gifts, the delay has already done its work.

The environmental advocacy ecosystem shown at the outset of this report does not need to stop every project to have an impact. It only needs to slow enough of them, often enough, to tighten supply, raise costs, and pass those costs quietly to consumers.

By the time parents are shopping for Christmas gifts, the delay has already done its work.